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Since its discovery, RNA interference has been identified as involved
in many different cellular processes, and as a natural antiviral
response in plants, nematodes, and insects. In insects, the small
interfering RNA (siRNA) pathway is the major antiviral response. In
recent years, the Piwi-interacting RNA (piRNA) pathway also has
been implicated in antiviral defense in mosquitoes infected with
arboviruses. Using Drosophila melanogaster and an array of viruses
that infect the fruit fly acutely or persistently or are vertically trans-
mitted through the germ line, we investigated in detail the extent
to which the piRNA pathway contributes to antiviral defense in
adult flies. Following virus infection, the survival and viral titers of
Piwi, Aubergine, Argonaute-3, and Zucchini mutant flies were sim-
ilar to those of wild type flies. Using next-generation sequencing of
small RNAs from wild type and siRNA mutant flies, we showed that
no viral-derived piRNAs were produced in fruit flies during different
types of viral infection. Our study provides the first evidence, to our
knowledge, that the piRNA pathway does not play a major role in
antiviral defense in adult Drosophila and demonstrates that viral-
derived piRNA production depends on the biology of the host–virus
combination rather than being part of a general antiviral process
in insects.
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Three main small RNA-based silencing pathways have been de-
scribed in animals: the microRNA (miRNA), small interfering

RNA (siRNA), and Piwi-interacting RNA (piRNA) pathways. These
pathways are involved in the regulation of different key biological
processes, including organism development (1), defense against viral
pathogens (2), and genome protection from transposable element
(TE) activity (3). Despite their different biological functions, all three
pathways use small RNAs (from 21 to 30 nt) to guide the sequence-
specific recognition of target sequences by an Argonaute protein
family member.
The siRNA pathway is a major antiviral defense mechanism in

insects (4–10). This pathway is triggered in host cells by the presence
of viral double-stranded RNA (vdsRNA) derived from viral repli-
cation intermediates, genomes of dsRNA viruses, overlapping
transcripts of DNA viruses, or secondary viral genome structures. In
Drosophila melanogaster, vdsRNA is recognized and processed into
21-nt-long viral siRNAs (vsiRNAs) by Dicer-2 protein (Dcr-2), a
type III RNA endonuclease. Once diced, double-stranded vsiRNAs
are first loaded into the RNA-induced silencing complex (RISC),
then unwound, and one strand is ejected from the complex. Single-
stranded vsiRNAs are finally methylated in their 3′ end nucleotide
2’-OH group by Hen1 methyltransferase (11). Through the activity
of its main catalytic component, the RNase H type nuclease
Argonaute-2 protein (Ago-2), RISC guides the sequence-specific
recognition and cleavage of viral target RNAs (12), leading to
viral genome degradation and, consequently, restriction of viral
replication.
The piRNA pathway has been identified as the main protection

mechanism against the activity of TEs in animal genomes. The
biogenesis of piRNAs involves two steps, the primary process-
ing mechanism and the secondary amplification mechanism.

Production of piRNAs is Dicer-independent and relies mainly
on the activity of Piwi proteins, a subclass of the Argonaute family
(13). Primary piRNAs are processed from single-stranded RNA
precursors, which are transcribed mostly from chromosomal loci
consisting mainly of remnants of TE sequences, termed piRNA
clusters (14). In D. melanogaster, the cleavage of primary piRNA
precursors and generation of 5′ end of mature piRNAs were re-
cently linked to Zucchini endonuclease (Zuc) activity (15–18). The
cleaved precursor is loaded into Piwi family Argonaute proteins
Piwi or Aubergine (Aub) and then trimmed by a still-unknown
nuclease to reach its final length, which can vary from 24 to 30 nt.
For example, piRNAs have a size centered around 25 nt in the
fruit fly, but centered around 28 nt in Aedes mosquitoes. After
trimming, piRNAs undergo a final 3′ end 2′-O-methyl nucleotide
modification catalyzed by the methyltransferase Hen1 (11, 19) to
become mature piRNAs. Primary piRNAs harbor a 5′ uridine bias
(U1) and are usually antisense to TE transcripts (20). The cleavage
of complementary active transposon RNA by primary piRNAs
loaded into Aub proteins initiates the second biogenesis round
and leads to the production of secondary piRNAs that are loaded
in Argonaute-3 protein (Ago-3). During this ping-pong or
amplification cycle, Aub and Ago-3 proteins loaded with secondary
piRNAs mediate the cleavage of complementary RNA to generate
new secondary piRNAs identical in sequence to the piRNA that
initiated the cycle. Because target slicing by Piwi proteins occurs
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between nucleotides 10 and 11, the complementary secondary
piRNAs typically have a 10-nt overlap and contain an adenine at
position 10 (A10) (14, 21).
Unlike the siRNA pathway that seems to be ubiquitously

expressed in insect tissues, most experimental data indicate that
the piRNA pathway is active mainly in germ-line tissues. Never-
theless, endogenous piRNAs also have been identified in various
somatic tissues from fly, mouse, and macaque, as well as in mos-
quito head and thorax (22, 23).
The piRNA pathway was recently implicated in antiviral defense

in insects. The antiviral activity of the piRNA pathway was first
suggested in 2010, when viral small RNAs with the length of piRNAs
were detected in Drosophila ovarian somatic sheet (OSS) cells (24).
Since then, work on the subject has centered exclusively on
mosquito-arbovirus experimental systems. In Aedesmosquitoes and
cell lines, an expanded family of Piwi proteins is expressed in so-
matic tissues, and viral-derived piRNAs (vpiRNAs) are produced
from the genomes of several arboviruses (23, 25–29). Functional
links among the piRNA pathway, arbovirus replication, and
vpiRNA production have been described as well. Depletion of Piwi-4
protein was found to enhance replication of Semliki Forest virus
[SFV; (+)ssRNA, Togaviridae] without interfering with vpiRNA
production in Aag2 cells (30), whereas both Piwi-5 and Ago-3 were
shown to be required for the biogenesis of piRNAs from Sindbis
virus [SINV; (+)ssRNA, Togaviridae] in the same cell line (31).
Nevertheless, functional in vivo experimental data are scarce, and

more work is needed to fully understand the extent to which the
piRNA pathway contributes to antiviral defense not only in mos-
quitoes, but also in the context of other insect–virus interactions.
D. melanogaster is a powerful insect model for studying virus–host

interactions (32, 33). Mutants for virtually all genes encoded by the
genome of the fruit fly are publicly available, and Drosophila viruses
from several families have been isolated, their genomes sequenced,
and their biological characteristics described. These include Dro-
sophila C virus [DCV; (+)ssRNA Dicistroviridae], Drosophila X virus
[DXV; bisegmented dsRNA, Birnaviridae], Drosophila A virus
[DAV; (+)ssRNA, unclassified, related to Permutotetraviridae], Nora
virus [NoraV; (+)ssRNA, unclassified, related to Picornaviridae], and
D. melanogaster sigma virus [DMelSV, (−)ssRNA, Rhabdoviridae]
(34). Infection of flies with viruses from other insect hosts, such as
SINV, a mosquito-infecting arbovirus; Flock house virus [FHV;
bisegmented (+)ssRNA, Nodaviridae], originally isolated from the
grass grub Costelytra zealandica (35), and the rice stem borer larvae-
isolated Invertebrate iridescent virus 6 [IIV-6; dsDNA, Iridoviridae]
(36), among others, is also possible under laboratory conditions.
Despite the numerous molecular tools available to decipher

antiviral responses in flies, and the fact that viral small RNAs with
the length of piRNAs were first reported in fly tissues (24), no
further work addressing the antiviral role of piRNAs has been
performed in Drosophila. Only two studies published before the
discovery of vpiRNA highlighted a functional link between piRNA
pathway and antiviral defense in flies. Piwi mutant flies were found
to be more susceptible to both DXV and West Nile virus [WNV;
(+)ssRNA, Flaviviridae] infections, and Aub mutant flies were
found to be more susceptible to DXV (10, 37).
In the present work, we aimed to characterize the impact of the

piRNA pathway on the fly antiviral response. We sought to un-
derstand whether the viral-derived piRNAs are part of the general
antiviral process, or whether their production depends on the
biology of the host–virus combination. Our results indicate that
the piRNA pathway does not play a major direct role in antiviral
defense in Drosophila, and that vpiRNAs are not produced in the
fruit fly during different types of viral infection. We speculate that
during speciation and diversification of the piRNA pathway
proteins in insects, the piRNA pathway evolved solely to repress
transposon activity in the fruit fly while expanding to an antiviral
role in mosquitoes.

Results
Isogenization and Characterization of piRNA Mutant Flies on thew1118

Isogenic Background. To reduce genetic background effects when
studying the impact of the piRNA pathway mutants on antiviral
response, we backcrossed Zuc, Aub, and Ago-3 mutants to wild type
(WT) flies (w1118) so they were in similar genetic backgrounds (SI
Appendix, Fig. S1A). For each generation, we genotyped the flies by
PCR to retain only those carrying the mutant allele (SI Appendix, Fig.
S1). After 10 backcrosses, we compared the phenotypes from the new
Aub (Fig. 1 and SI Appendix, Figs. S3 and S4), Ago-3, and Zuc (SI
Appendix, Figs. S2–S4) backcrossed lines with the parental lines by
performing small RNA deep sequencing and analyzing piRNA pro-
duction. Small RNAs ranging from 19 to 30 nt were recovered and
sequenced in mutant and WT flies, as well as in the parental mutant
lines. Data analysis was centered on the following features: (i) overall
small RNA production, (ii) production of piRNAs from the TE Idefix
(Fig. 1 and SI Appendix, Fig. S2), (iii) production of piRNAs from the
germ-line piRNA cluster 42AB (SI Appendix, Fig. S3), and (iv) pro-
duction of piRNAs from the somatic piRNA cluster Flamenco (SI
Appendix, Fig. S4). Fig. 1 B and C show that loss of Aub strongly
impacted the secondary piRNA population from the Idefix TE se-
quence. In addition, loss of Aub interrupted the piRNA ping-pong
cycle on the germ-line 42AB cluster (SI Appendix, Fig. S3C; loss of
A10 bias). In contrast, the loss of Ago-3, which participates in the
ping-pong amplification cycle, produced piRNAs with a ping-pong
signature and the U1-A10 bias (SI Appendix, Figs. S3D and S4D) due
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Fig. 1. Loss of secondary piRNAs for Idefix TE in the Aubergine mutant
strains. (Left) Size distribution of β-eliminated small RNAs extracted from
w1118 (A), Aub parental mutant strain (B), and backcrossed Aub (C) mutant
flies. (Right) Frequency map of the distance between 24–26 nt small RNAs
that mapped to opposite strands of the Idefix sequence. A peak is observed
at position 10 for w1118, but not for either of the Aub mutant strains. The
relative nucleotide frequencies per position of the 24–26 nt small RNAs that
map the sense and antisense of the genome are shown in red and green,
respectively. The intensity varies in correlation with frequency. A nucleotide
bias (U1 and A10) is observed for w1118, but not for the Aub mutant strains.
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Fig. 2. piRNA mutant flies are no more sensitive to viral infection than WT flies. Group of 20 flies control or piRNA mutants, Ago-3t2/t3, AubHN2/QC42 and Piwi1/2

were infected by injection with three different viruses: DCV (2 TCID50) (A), DXV (100 TCID50) (B), and SINV (5,000 PFU) (C). (Upper) Survival was monitored
daily. Each experiment was repeated three times. Data shown are mean ± SD. Dashed lines correspond to Tris injection to control the effect of injection on fly
survival. Control (w1118) flies are shown in blue; mutant flies, in red. For Piwi1/2 flies, the dark-gray/light-gray lines correspond to the heterozygote control.
Differences in survival between control and piRNA mutant flies were not statistically significant [log-rank (Mantel–Cox) test]. (Lower) Viral titer was de-
termined for a group of five flies in triplicate for each genotype. The viral titration was done at 0, 2, and 4 dpi for DCV (A) and at 0, 3, and 6 dpi for DXV
(B) and SINV (C). No significant difference (two-way ANOVA) between the different genotypes was observed.
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to the Aub-Aub ping-pong that is still active in the absence of Ago-3
(38, 39). All mutants produced similar profiles when mapped
to Flamenco (SI Appendix, Fig. S4), a specific piRNA cluster of
somatic cells (40). Finally, the loss of Zucchini protein led to the
absence of primary piRNAs for Idefix, 42AB, and Flamenco (SI
Appendix, Figs. S2B, S3B, and S4B). It is noteworthy that in the
absence of Zucchini, the ping-pong signature and the U1-A10
bias were still present, because the loss of primary piRNAs
increased detection of the secondaries.
We also compared primary and secondary piRNAs in whole

flies versus ovaries. Germ line-dominant piRNA clusters, as well
as somatic dominant piRNA clusters and TEs, were readily de-
tectable in both conditions (SI Appendix, Fig. S5).
Through the foregoing analyses, we established not only the be-

havior of the backcrossed mutant flies as the parental lines regarding
piRNA production, but also the capacity of our bioinformatic pipe-
lines to detect somatic and germ-line piRNAs. All experiments with
Aub, Ago-3, and Zuc mutant flies were performed in backcrossed
flies, whereas the Piwi mutant was used in its original genetic
background.

piRNA Mutant Flies Are No More Susceptible to Viral Infections than
WT Flies. To determine the impact of the piRNA pathway on anti-
viral immunity, we studied the effect of acute viral infections on fly
mutants for key components of both primary (Zuc and Piwi)

and secondary (Aub and Ago-3) piRNA biogenesis pathways.
We inoculated control, Piwi, Aub, and Ago-3 mutant flies with two
Drosophila viruses, DCV and DXV, and one mosquito-infecting
arbovirus, SINV. We assessed fly survival and virus accumulation
after inoculation. We did not find any difference in mortality of
control and mutant flies following infection; all flies died between
6 and 10 d postinfection (dpi) with DCV and DXV (Fig. 2 A and
B, Upper).
Even in the absence of lethality, it is possible that piRNA mu-

tant flies cannot successfully control viral loads, which would in-
dicate a role of the piRNA pathway in viral defense. To test this,
we collected fly samples at 0, 2 and 4 dpi with DCV and at 0, 3 and
6 dpi with DXV. We measured viral load by 50% tissue culture
infective dose (TCID50). We did not find differences in DCV or
DXV accumulation between control and piRNA mutant flies at
any time point analyzed (Fig. 2 A and B, Lower). When inoculating
Zuc mutant flies with DCV and DXV we observed a significant
resistance to virus infection in these flies that is not associated to
the Pastrel gene allele (41) because flies were backcrossed. Similar
to the others piRNA mutants, no difference in viral load was ob-
served (SI Appendix, Fig. S6 A and B). In the case of SINV inocu-
lations, neither control nor piRNA mutant flies succumbed after
infection, as SINV developed a persistent infection (Fig. 2C,Upper).
We assessed SINV accumulation by plaque assay in fly sam-
ples collected at 0, 3, and 6 dpi, and again found no differences
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in SINV load among the different genotypes (Fig. 2C, Lower and
SI Appendix, Fig. S6C). Taken together, these results show that
piRNA Zuc, Piwi, Aub, and Ago-3 mutants are no more susceptible
to DCV, DXV, or SINV infections than control flies, suggesting
that neither primary nor secondary piRNA biogenesis pathways
play a major antiviral role for these viruses in adult Drosophila.

No Viral-Derived piRNAs Are Produced in Flies During Acute Viral
Infection. The potential of the piRNA pathway to recognize and
process viral RNAs in Drosophila has been demonstrated in the
OSS cell line (24). Because OSS cells do not express Aub and
Ago-3 proteins, only the primary piRNA biogenesis step is active
in these cells (42), and consequently, only primary 25–30 nt
vpiRNAs with a U1 bias were observed (24). The implication of
secondary piRNA biogenesis pathway in vpiRNAs production in

flies has not yet been addressed, nor has the production of
vpiRNAs in vivo. To investigate this, we inoculated WT (w1118) flies
with DCV, DXV, or SINV. Infected flies were sampled at 2 dpi for
DCV and at 3 dpi for DXV and SINV after inoculation, and small
RNAs ranging from 19 to 30 nt were recovered and subjected to
β-elimination to enrich small RNA molecules harboring a 3′ end
2′-O-methyl nucleotide modification, such as mature siRNAs or
piRNAs (43). Following high-throughput sequencing, the analysis of
size distribution for DCV-, DXV-, and SINV-derived small RNAs
showed a sharp peak of 21 nt enrichment, characteristic of vsiRNAs
produced by Dcr-2 activity during the RNAi antiviral response
(Fig. 3 A–C, Left). vsiRNAs represented 63%, 88%, and 90% of
all viral reads for DCV, DXV, and SINV respectively, and were
distributed across the entire viral genomes and derived from
both negative and positive strands of viral replication intermediates
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(Fig. 3 A–C, Center and SI Appendix, Table S9). Only a small pro-
portion of virus-derived small RNAs corresponded to the expected
size of vpiRNAs of 24–26 nt: 5.7%, 0.4%, and 0.2% of all small RNA
reads for DCV, DXV, and SINV, respectively (Fig. 3 A–C, Center
and SI Appendix, Table S9). These reads, distributed along complete
viral genomes, were derived mainly from the viral positive strand and
did not exhibit any of the characteristic biochemical biases described
for piRNA: uridine at the 5′ end position (U1), adenosine at the
tenth position (A10), and 10 nt overlaps between sense and antisense
sequences (Fig. 3 A–C, Right).
We next analyzed the production of vpiRNAs in flies deficient

for the siRNA pathway—Dcr-2 and Ago-2 null mutants—to test
whether the absence of the main antiviral mechanism could reveal
a contribution of the piRNA pathway to the antiviral response.
We inoculated Dcr-2 and Ago-2 mutant flies with DCV, DXV, or
SINV. As for WT flies, small RNAs ranging from 19 to 30 nt were
recovered, samples were subjected to β-elimination and deep-

sequenced. During SINV infection, as expected, the amount of viral
small RNAs in Dcr-2 mutant flies was close to zero (SI Appendix,
Fig. S7A), whereas Ago-2 mutant flies accumulated vsiRNAs of
21 nt from both polarities to a greater extent (SI Appendix, Fig.
S7B). In no case were vpiRNAs detectable, and the few small RNAs
in the size range of piRNAs did not exhibit a piRNA signature. In
DCV and DXV infection, there was a significant accumulation of
small RNAs of positive polarity in both Dcr-2 and Ago-2 mutant
flies (SI Appendix, Figs. S7 C and D and S8). Analysis of the small
RNA reads corresponding to the size of piRNAS did not reveal any
vpiRNAs, and the few reads that accounted for piRNA size did not
display a ping-pong signature or U1-A10 bias (SI Appendix, Figs. S7
C and D and S8). Taken together, and considering the capability of
our sequencing and bioinformatics pipeline to detect either somatic
or germ-line piRNAs, these data suggest that vpiRNAs are not
produced in adult WT flies during DCV, DXV, and SINV acute
infections, and that in the absence of a fully functional antiviral
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RNAi pathway, the piRNA pathway is not able to engage in an
antiviral response based on the production of viral small RNAs.

No Viral-Derived piRNAs Are Detected in Persistently Infected Flies.
Insects develop viral persistent infections as a common outcome.
During a persistent infection, the virus replicates but has rela-
tively little effect on host fitness. It has been proposed that the
siRNA pathway is boosted during persistent infection by the
production of more abundant and distinct vsiRNAs (44). Those
vsiRNAs are generated from a viral DNA form. Because en-
dogenous piRNAs sources are host genome-encoded DNA
clusters, we thought that this viral-derived DNA could constitute
the source of vpiRNAs. Thus, we decided to analyze the pres-
ence of vpiRNAs in fly stocks persistently infected with DCV,
NoraV, or DAV. Small RNAs ranging from 19 to 30 nt were
recovered from persistently infected flies, and the samples were
subjected to β-elimination and deep-sequenced. DCV-, NoraV-,
and DAV-derived small RNA profiles displayed the expected
21-nt vsiRNAs accumulation peak, a product of Dcr-2 activity

during RNAi antiviral response (Fig. 4, Left). vsiRNAs were dis-
tributed across the complete viral genomes, matched both positive
and negative viral strands, and represented 69.97% of the short
RNA reads for DCV, 67.40% of those for NoraV, and 82.33% of
those for DAV (Fig. 4, Center and SI Appendix, Table S9). In
contrast, viral-derived small RNAs of the expected size for
vpiRNAs (24–26 nt) represented only 2.89%, 1.66%, and 0.73%
of the reads for DCV, NoraV, and DAV respectively (Fig. 4 and
SI Appendix, Table S9). Reads were derived mainly from the
viral positive strand and did not display any of the signatures of
piRNAs (Fig. 4, Center and Right). Taken together, our data show
that during persistent viral infections, D. melanogaster does not
produce vpiRNAs.

No Viral-Derived piRNAs Are Detected in Flies Infected with a
Vertically Transmitted Drosophila Virus. Although one study has
reported the presence of endogenous piRNA-like small RNAs in
fly heads and imaginal discs (22), piRNA pathway components
are expressed and piRNAs produced predominantly in the fly
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germ-line tissues and surrounding somatic cells (45). DMelSV is
a vertically transmitted natural Drosophila virus that is able to
replicate in fly germ-line tissues (46, 47). To study whether
vpiRNA production is restricted to viruses able to replicate in
germ-line tissues, we analyzed the presence of these small RNA
species in flies infected with DMelSV. We used three Drosophila
strains: a line (22a) naturally susceptible to DMelSV (48), a line
(E320) persistently infected with the same virus (46), and w1118

WT flies. We inoculated w1118 and 22a flies with DMelSV. Small
RNA populations present in WT and 22a line-infected flies were
analyzed at 12 dpi. Small RNAs from the E320 line were ana-
lyzed in 4- to 6-d-old flies. In all cases, small RNAs ranging from
19 to 30 nt were recovered, and the samples were subjected to
β-elimination (except for 22a flies) and deep-sequenced. As
shown in Fig. 5, DMelSV infection produced abundant vsiRNAs
distributed across the complete viral genomes, matching both
positive and negative viral strands. For the small RNAs of 24–26
nt, no vpiRNAs were detected. This finding indicates that viruses
that specifically infect the germ line as well as somatic tissues are
also controlled by the siRNA antiviral response and do not trigger a
piRNA-mediated antiviral response in adult flies.

No Viral-Derived piRNAs Are Detected in Flies Infected with Other
Model Viruses. IIV-6 and FHV are not natural Drosophila viruses.
Nevertheless, both are able to replicate in D. melanogaster under
experimental conditions (49–51). IIV-6 is commonly used as a DNA
virus model, and we thought that vpiRNAs could originate from a
DNA source, as is the case for endogenous piRNAs. In contrast,
FHV is a single-stranded positive-sense RNA virus that has been
extensively used to study antiviral responses in flies. Work from our
laboratory has demonstrated that during FHV infection of both flies
and the S2 Drosophila cell line, an FHV-derived DNA form was
produced that was implicated in the establishment of persistent in-
fections (44). Based on the same rationale that we used for IIV-6, we
hypothesized that the FHV DNA form could constitute a vpiRNAs
source. We analyzed published small RNA libraries (SRA 048623
and SRA 045427) for the presence of vpiRNAs. As in all of the
previous conditions and as shown in Fig. 6 for IIV-6, we were not
able to detect viral small RNAs with the characteristic signature of
piRNAs in D. melanogaster.

Discussion
The piRNA pathway was recently implicated in antiviral defense
in insects. This pathway is based on small RNAs and was first
identified as the main mechanism controlling TE activity in an-
imal genomes. Despite the fact that viral-derived piRNAs were
first suggested to be present in Drosophila OSS cells (24), and
that Aubergine (10) and Piwi (37) mutant flies appeared to be
more sensitive to viral infection, none of these studies actively
sought to prove or disprove the existence of viral piRNAs in
Drosophila. The reports that followed used arboviral infections
of mosquitoes or mosquito cells in culture as model systems. We
decided to carry out a comprehensive study on the role of the
piRNA pathway during viral infection in D. melanogaster. Using
an array of RNAi mutants, an array of viruses corresponding to
different families with (+)ssRNA, dsRNA, and dsDNA genomes
that, naturally or not, infect the fly, our phenotypic observations
of the impact of viral infection on piRNA mutants via measures
of fly survival and viral loads, as well as high-throughput sequencing,
we demonstrate that (i) mutant adult flies for key components of
the piRNA pathway (Zuc, Piwi, Aub, and Ago-3) are no more
susceptible than WT flies to two Drosophila viruses (DCV and
DXV) and an arbovirus (SINV); (ii) no vpiRNAs are produced
during acute infections with DCV, DXV, SINV, DMelSV, IIV6,
and FHV; (iii) no vpiRNAs are produced during persistent in-
fections with DCV, NoraV, DAV, or DMelSV; (iv) in the ab-
sence of the siRNA pathway (Ago-2 and Dcr-2 mutants), no
vpiRNAs are produced during DCV, DXV, and SINV infection;

and (v) no vpiRNAs are detected during infection with DmelSV,
DXV, and FHV, shown to infect ovarian cells (51, 52). Taken to-
gether, these results indicate that the piRNA pathway is not in-
volved in the antiviral response mediated by vpiRNAs. In addition,
our capacity to detect somatic piRNAs from ovarian somatic sheet
cells when performing deep sequencing of ovaries indicates that we
are not missing a very low number of vpiRNAs that could have been
generated by this cell type. Indeed, Flamenco has been proposed as
an ovarian somatic sheet cells-only piRNA cluster, and as such
validates the sensitivity of our deep-sequencing methodology.
Before vpiRNAs were described, Zambon et al. (10) and

Chotkowski et al. (37) reported that Piwi and Aub mutant flies
were more sensitive to DXV and WNV infection, displaying an
accelerated death and higher viral loads compared with WT flies.
The fact that we did not observe the same phenotype in flies that
are backcrossed leads us to believe that their observation is based
on a genetic background effect. The background effect was
acknowledged in recent publications (53), and there is consid-
erable natural genetic variation among Drosophila lines in their
susceptibility to the viruses that we have studied. Thus, our re-
sults reinforce the importance of studying mutants in the same
genetic backgrounds to avoid misleading interpretations.
Along with the genetic background, our results also allow us to

rule out effects due to superinfection. Indeed, a recent study found
that about 40% of fly stocks are persistently infected with different
viruses (54). As described in Materials and Methods, our fly stocks
were treated to eliminate Wolbachia (antibiotic treatment) and
persistent viruses (bleach treatment of the embryos); therefore,
previous infections and genetic background are not issues when
analyzing our results.
It has been shown that genes involved in pathogen defense evolve

much faster than the rest of the genome. Ago-2 is a clear example of
this observation (55). Interestingly, genes in the piRNA pathway,
including Piwi and Aub, also evolve very rapidly, which has been
suggested to be caused by adaptation to the ever-changing land-
scape of transposition activity in the fly (55, 56). The possibility that
through regulation of transposons in somatic and germ-line tissues,
the piRNA pathway could tune or control in a subtle manner the
immune state of the host by genes involved in immunity cannot be
disregarded. A curious example arises when studying the Flamenco
locus, which is located downstream of the DIP1 gene and is the
source of piRNAs that silence various transposable elements.
Flamenco-derived piRNAs are produced exclusively from the plus
strand of the genome, indicating transcription from the DIP1 gene
toward the centromere (40). Recently, DIP1 was reported to be
involved in antiviral immunity against DCV, but not against DXV
(57). Fly mutants forDIP1 are hypersensitive to DCV infection, and
the authors postulated that DIP1 is a novel antiviral gene. The fact
that Flamenco-derived piRNAs in somatic tissues in the ovary are
produced from transcription from the DIP1 gene (40) allows us to
hypothesize that DIP1-mediated DCV sensitivity is dependent on
the presence of piRNAs targeting the DIP1 gene. In this way, the
piRNA pathway or, more precisely, the production of piRNAs from
the Flamenco locus, would not have a direct and general effect as an
antiviral but instead would have an indirect and virus-specific effect.
Alternatively, it could be presumed that the piRNA pathway
exhibits an antiviral effect in Drosophila larvae or embryos. This
hypothesis merits further study together with the antiviral re-
sponse during development in flies and other model insects.
Interestingly, whereas flies encode three Piwi proteins (Piwi, Aub,

and Ago-3), the Piwi family is expanded to eight members (Piwi 1–7
and Ago-3) in the mosquito Aedes aegypti and to seven members in
Culex pipiens (58). It is tempting to speculate that during speciation
and diversification of piRNA pathway proteins, the piRNA pathway
gained additional functions in addition to the repression of trans-
poson activity in mosquitoes, while remaining focused exclusively
on the control of transposons in the fly. Alternatively, it could be
proposed that the piRNA pathway has lost an ancestral antiviral
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function since the last common ancestor of flies and mosquitoes. We
believe that our results shed light on the complexity of the antiviral
response in insects and reflect the diversity of action of the canonical
RNAi pathways in invertebrates.

Materials and Methods
Fly Strains and Husbandry. Flies were maintained on a standard cornmeal diet
(Bloomington) at a constant temperature of 25 °C. Fly stocks are listed in SI
Appendix, Table S10. All fly lines were cleaned of possible chronic infections
as described previously (59, 60). In brief, eggs were collected in agar/apple
plates, treated with 50% bleach for 10 min, washed with water, and
transferred to fresh vials. To eliminate Wolbachia infection, flies were
treated for two generations with 0.05 mg/mL of tetracycline hydrochloride
(Sigma-Aldrich) in the medium. In addition, all fly stocks were analyzed by
RT-PCR with specific pairs of primers for CrPv, DAV, DXV, DCV, FHV, and
NoraV.

Virus Production and Titration. DCV and DXV stocks were prepared on low-
passage S2 cells, and titers weremeasured by end-point dilution. S2 cells (2.5×105

cells per well in a 96-well plate) were inoculated with 10-fold dilution of virus
stocks. At 7 and 14 dpi, the cytopathic effect was analyzed. Titers were calculated
as TCID50 according to a published method (61). SINV viral stocks were produced
on a BHK cell line, and virus titer (PFU/mL) was determined by a plaque assay on
BHK cells.

Toquantify viral load in flies, threepools of five flies eachwereanalyzedat 0, 2,
and 4 dpi for DCV infection and at 0, 3, and 6 dpi for SINV andDXV infection. DCV
and DXV viral loads were measured by TCID50, and SINV viral load was measured
by a plaque assay.

Viral Infections and Survival Assays. The infection experiments were conducted
using 4- to 6-d-old flies. Infections were done by intrathoracic injection (Nanoject II
apparatus; Drummond Scientific) of 50 nL of a viral suspension in 10mMTris, pH 8.
An injection of the same volume of 10 mM Tris, pH 8 served as a mock-infected
control. Infected flies were kept at 25 °C and changed to fresh vials every 2 d.
Survival of infected flies was measured daily by counting the number of dead flies
in each test tube. Survival data were evaluated using a log-rank (Mantel–Cox) test.

RNA Extraction and Library Production. For each virus infection, small RNA was
specifically extracted with the mirVana miRNA Isolation Kit (Ambion) from
150–200 flies at 2 dpi for DCV, 3 dpi for DXV and SINV, and 12 dpi for DMelSV.
For each sample, 19–29 nt small RNAs were purified from a 15% acrylamide/
bisacrylamide (37.5:1), 7 M urea gel as described previously (62). Purified RNAs
were used for library preparation using the NEBNext Multiplex Small RNA Li-
brary Prep for Illumina (New England Biolabs) with the 3′ adapter from In-
tegrated DNA Technologies (linker 1) and in-house–designed indexed primers.
Libraries were diluted to 4 nM and sequenced using the NextSeq 500 High-
Output Kit v2 (Illumina) (75 cycles) on a NextSeq 500 sequencer (Illumina). Reads
were analyzed with in-house Perl scripts.

Bioinformatics Analysis of Small RNA Libraries. The quality of fastq files was
assessed using graphs generated by FastQC (www.bioinformatics.babraham.ac.
uk/projects/fastqc/). Using cutadapt (https://cutadapt.readthedocs.io/en/stable/),
low-quality bases and adaptors were trimmed from each read. Only reads
with acceptable quality were retained. FastQC generated a second set of
graphics on the fastq files created by cutadapt (63). Reads were mapped to
genomes using bowtie1 (64) with the −v 1 (one mismatch between the read
and its target). bowtie1 generates results in sam format. All sam files were
analyzed by the samtools package (38) to produce bam indexed files. To an-
alyze these bam files graphs were generated using custom R scripts and the
Bioconductor Rsamtools and Shortreads libraries (65).

Statistical Analysis. Each experiment was repeated independently three
times. Error bars represent SD. Statistical significance of survival data were
calculated with a log-rank (Mantel–Cox) test. The statistical significance of
viral load in flies was calculated by two-way ANOVA.
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